Inhibition of Lysyl Oxidase Like-2 (LOXL2) reduces cardiac interstitial fibrosis in mice


Drug Discovery, Pharmaxis Ltd., 20 Rodborough Road, Frenchs Forest, NSW, Australia; *Heart Research Institute, Eliza Street, Newton, NSW, Australia

Introduction
Lysyl oxidases are a family of enzymes responsible for the conversion of the primary amine group of (hydroxyl-) lysine residues to the corresponding aldehyde. In extracellular matrix proteins, lysyl oxidases contribute to cross-linking, thereby stabilising areas of fibrosis that occur following tissue injury. Accumulation of cross-linked extracellular matrix and the resulting excessive fibrosis can ultimately progress to organ failure.

Yan et al (DOI: 10.1038/ncomms13710) have recently shown that an enzyme that crosslinks collagen—Lysyl Oxidase-Like-2 (LOXL2)—is essential for interstitial fibrosis and mechanical dysfunction of pathologically stressed hearts, with other lysyl oxidase family members less upregulated during cardiac fibrosis. Importantly, in diseased human hearts, LOXL2 is upregulated in cardiac interstitium, with levels correlating with the extent of collagen crosslinking and resultant cardiac dysfunction. LOXL2 is also elevated in the serum of heart failure (HF) patients, correlating with other HF biomarkers, suggesting a conserved LOXL2-mediated mechanism of human HF.

Pharmaxis has developed small molecule mechanism-based inhibitors that are selective for LOXL2 over ubiquitous LOX and have drug-like properties.

Fig. 1
LOX or LOXL2 secreted from human fibroblasts was pre-incubated with inhibitor for 30 min and activity was measured in physiological buffer solution.

Table 1
Pharmacology of Cmpd A against other lysyl oxidases
No inhibition (IC_{50} > 30 μM) of other amine oxidases (SSAO, MAO-A and MAO-B).

Summary
Pharmaxis has developed small molecules that selectively inhibit LOXL2 with nanomolar potency
• improve cardiac function after myocardial infarction
• and reduce the area of fibrosis.